

 [image: dmtools]

dmtools (Digital Media Tools) is a Python package providing low-level tools for
working with digital media programmatically. The netpbm module allows one to
read and create Netpbm images. Color space transformations can be done with the
colorspace module. Using ffmpeg, the animation module can export .mp4 videos
formed from a list of images and the sound module can be used to add sound to
these videos as well. Lastly, ASCII art can be produced with the ascii module.

	Installation
	Installing Python

	Installing dmtools

	Installing FFmpeg (Optional)

	Tutorials
	Using Jupyter Notebooks

	Introduction to Python

	Working with Images in NumPy

	Documentation
	dmtools package

Installation

For those experienced with installing and using Python packages, you can find
brief installation instructions in the README [https://github.com/henryrobbins/dmtools/blob/master/README.md]. The installation instructions
found here are aimed at beginner users. First, we will install a programming
language called Python [https://www.python.org/]. Next, we will install dmtools, a Python package.
The last section is optional and a little more intensive. It walks through the
installation of a program called FFmpeg [https://www.ffmpeg.org/] which is required if you wish to
create videos with dmtools.

	Installing Python

	Installing dmtools

	Installing FFmpeg (Optional)

Installing Python

In order to use dmtools, you will need to install the Python programming
language. We preface the Python installation instructions with a breif Q&A.
This section is ordered so that each answer naturally leads into the
following question so it is best read in order.

Q&A

“What is Programming Language?”

The purpose of a programming language is to allow us
to give instructions to a computer. At first, this may seem foreign. However,
every time you interact with a computer, you are giving it instructions to do
certain tasks like which website to navigate to, what document to open, etc..
The difference is in the way you are communicating that information. You are
most likely familiar with Graphical User Interfaces (GUIs [https://wikipedia.org/wiki/Graphical_user_interface]). These are
programs which provide graphical ways of giving the computer instructions using
the keyboard and mouse to point and click.

“How does a programming lanaguage let us give instructions to a computer?”

Without getting into too much detail, programming langauges are just like
human languages. They have syntax [https://wikipedia.org/wiki/Syntax_(programming_languages)] which defines the structure of the
language and they have semantics [https://wikipedia.org/wiki/Semantics_(computer_science)] which define the meaning of certain
structures in the language. Following these rules, we can write up a set of
instructions and it off to the computer to execute.

“This sounds complicated. Why would I use this instead of a program with a nice GUI?”

There are two main reasons: humans are lazy and flexibility. Often times, there
are tasks on the computer that are extremely repetitive. Unlike GUIs,
programming languages don’t require the human to be very involved. We only need
to give the instructions once and the computer will go on chugging away until
we tell it to stop. In terms of flexibility, it may seem that programs like
Photoshop and Google Docs have an endless number of tabs, knobs, and dials but
their flexibility pales in comparison to programming languages. With a
programming language, the limit is quite literally, your imagination.

“What is Python?”

Yes, Python is a programming language. But, there are many different ways to
classify programming languages. There are many characteristics of Python but
the one we wish to emphasize here is that it is a general-purpose
scripting language [https://wikipedia.org/wiki/Scripting_language]. Scripting lanaguages “automate the exectution of tasks
that would otherwise be performed indiviually by a human operator.” It is
simple in that files written in the language can be run as scripts where the
computer just goes through the file linearly, executing each task as it is given.

Anaconda

To install Python, we will use Anaconda [https://www.anaconda.com/] which provides an extremely popular
Python distribution called Anaconda Individual Edition [https://www.anaconda.com/products/individual-d]. Navigate to the link
and scroll to the bottom to select the Anaconda Installer for your operating
system. Choose the Graphical Installer.

[image: Anaconda Installers]
To verify you now have Python, open up a terminal (the Terminal Application on
macOS) and run python to open up a Python prompt (a place where Python
instructions can be run). The line beginning with >>> is where you can type
Python code and run it. Type print("Hello World!") and hit Enter. It
should display Hello World! as the result of the command! You can then type
quit() or CTRL+D to exit the prompt.

python
Python 3.8.8 (default, Apr 13 2021, 12:59:45)
[Clang 10.0.0] :: Anaconda, Inc. on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> print("Hello World!")
Hello World!
>>> quit()

You now have Python installed on your computer! Terminal is not a very friendly
place to learn to write code. For this reason, it is recommended you install
Juypter Notebook [https://jupyter.org/] at this point. See the Using Jupyter Notebooks tutorial for
more information. To install, navigate to the Home tab of the
Anaconda Navigator application and click install under Jupyter Notebook (Not
JupyterLab).

[image: Anaconda Applications]
After installing, the “Install” button should become a “Launch” button.

Installing dmtools

In this section, we will install the dmtools Python package. But first,
what is a Python package? A Python package is essentially pre-bundled Python
code that provides some functionality. For example, NumPy [https://numpy.org/] is a Python
package (one you will get more familiar with in Working with Images in NumPy) that
allows for easy manipulation of arrays. Python packages are your friend! They
allow you to easily use other people’s code so you never have to re-invent the
wheel and can spend more time being creative.

In installing anaconda, you should now have a program called pip [https://pip.pypa.io/en/stable/installation/] which stands
for Pip Installs Packages. It is a Python package manager and it is the tool
we will use to install dmtools. Just run the following line.

pip install dmtools

To the verify the installation worked correctly, open a Python prompt by typing
python and then type from dmtools import netpbm. If you don’t get any
error messages, the instllation was a success!

python
Python 3.8.8 (default, Apr 13 2021, 12:59:45)
[Clang 10.0.0] :: Anaconda, Inc. on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> from dmtools import netpbm
>>> quit()

Installing FFmpeg (Optional)

	This section is not optional of you wish to create videos with dmtools

	Currently, these installation instructions focus on macOS users. For
installation instructions on other operating systems, see Download FFmpeg [https://www.ffmpeg.org/download.html].

In order to install FFmpeg, we will first need to install a
package manager [https://wikipedia.org/wiki/Package_manager]. A package manager functions similarly to an app store–it
provides a way of installing and managing computer programs “in a consistent
manner.” Homebrew [https://brew.sh/] is a package manager for macOS. It is the one we will use
to install FFmpeg. To install it, paste the following line in macOS Terminal.

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

When running the above line, you will likley be prompted to install Command
Line Tools (CLT) for Xcode. This can be installed with

xcode-select --install

To verify Homebrew was installed properly, run brew in Terminal and
you should recieive a help page on various Homebrew commands. With Homebrew now
installed, you can easily install FFmpeg with

brew install ffmpeg

This installation may take some time. Once complete, verify it was installed
properly by running ffmpeg in Terminal. It should return some FFmpeg
version information.

Congratulations! You have now installed a package manager and FFmpeg. You will
now be able to create videos using dmtools.

Tutorials

This section includes a few tutorials to get you up and running and using
dmtools effectivley. The first tutorial is an introduction to Jupyter Notebooks
which are a tool for writing and exectuting Python code. It is highly
recommended that you follow this tutorial before proceeding to the Python
tutorial as the Python introduction will utilize Jupyter Notebooks and Following
along is the best way to learn. Similarly, the introduction to NumPy will use
Jupyter Notebooks.

	Using Jupyter Notebooks

	Introduction to Python

	Working with Images in NumPy

Using Jupyter Notebooks

This tutorial will walk through a short introduction to Jupyter Notebooks with
emphasis on basics needed to follow along to the following tutorials.

Introduction to Python

This tutorial will walk through a short introduction to Python with emphasis on
the neccessary basics for using dmtools and working with images.

Working with Images in NumPy

This tutorial will walk through a short introduction to NumPy with emphasis on
the tools that can be used for working with images.

Documentation

	dmtools package
	dmtools.io module

	dmtools.netpbm module

	dmtools.transform module

	dmtools.colorspace module

	dmtools.animation module

	dmtools.ascii module

	dmtools.sound module

	dmtools.arrange module

dmtools package

dmtools.io module

	
dmtools.io.read_png(path: str) → numpy.ndarray

	Read a png file into a NumPy array.

	Parameters

	path (str) – String file path.

	Returns

	NumPy array representing the image.

	Return type

	np.ndarray

	
dmtools.io.write_png(image: numpy.ndarray, path: str)

	Write NumPy array to a png file.

The NumPy array should have integer values in the range [0, 255].
Otherwise, this function has undefined behavior.

	Parameters

	
	image (np.ndarray) – NumPy array representing image.

	path (str) – String file path.

dmtools.netpbm module

	
class dmtools.netpbm.Netpbm(P: int, k: int, M: numpy.ndarray)

	Bases: object

An object representing a Netpbm image.

Netpbm is a package of graphics programs and a programming library. These
programs work with a set of graphics formats called the “netpbm” formats.
Each format is identified by a “magic number” which is denoted as P
followed by the number identifier. This class works with the following
formats.

	pbm [http://netpbm.sourceforge.net/doc/pbm.html]: Pixels are black or white (P1 and P4).

	pgm [http://netpbm.sourceforge.net/doc/pgm.html]: Pixels are shades of gray (P2 and P5).

	ppm [http://netpbm.sourceforge.net/doc/ppm.html]: Pixels are in full color (P3 and P6).

Each of the formats has two “magic numbers” associated with it. The lower
number corresponds to the ASCII (plain) format while the higher number
corresponds to the binary (raw) format. This class can handle reading both
the plain and raw formats though it can only export Netpbm images in the
plain formats (P1, P2, and P3).

The plain formats for all three of pbm, pgm, and ppm are quite similar.
Here is an example pgm format.

P2
5 3
4
1 1 0 1 0
2 0 3 0 1
2 2 3 1 0

The first row of the file contains the “magic number”. In this example, the
file is a grayscale pgm image. The second row gives the file
dimensions (width by height) separated by whitespace. The third row gives
the maximum gray/color value. In this case, it is the maximum gray value
since this is a grayscale pgm image. Essentially, this number encodes how
many different gradients there are in the image. Lastly, the remaining
lines of the file encode the actual pixels of the image. In a pbm image,
the third line is not needed since pixels have binary (black or white)
values. In a ppm full-color image, each pixels has three values represeting
it–the values of the red, green, and blue channels.

This descriptions serves as a brief overview of the Netpbm formats with the
relevant knowledge for using this class. For more information about Netpbm,
see the Netpbm Home Page [http://netpbm.sourceforge.net].

	
extension_to_magic_number = {'pbm': 1, 'pgm': 2, 'ppm': 3}

	

	
magic_number_to_extension = {1: 'pbm', 2: 'pgm', 3: 'ppm'}

	

	
rescale(k: int)

	Rescale the image by the desired scaling factor.

Uses Nearest-neighbor interpolation as the image scaling algorithm.
Read more about image scaling algorithms at
Image scaling [https://wikipedia.org/wiki/Image_scaling].

	Parameters

	k (int) – Scale factor

	
set_max_color_value(k: int)

	Set the maximum gray/color value of this Netpbm image.

	Parameters

	k (int) – Maximum gray/color value.

	
to_netpbm(path: str, comment: List[str] = [])

	Write object to a Netpbm file (pbm, pgm, ppm).

Uses the ASCII (plain) magic numbers.

	Parameters

	
	path (str) – String file path.

	comment (str) – List of comment lines to include in the file.

	
to_png(path: str)

	Write object to a png file.

	Parameters

	path (str) – String file path.

	
dmtools.netpbm.read_netpbm(path: str) → dmtools.netpbm.Netpbm

	Read Netpbm file (pbm, pgm, ppm) into Netpbm.

	Parameters

	path (str) – String file path.

	Returns

	A Netpbm image

	Return type

	Netpbm

dmtools.transform module

	
dmtools.transform.box_resize_weighting_function(x: float) → float

	Box filter’s weighting function.

For more information about the Box filter, see
Box [https://legacy.imagemagick.org/Usage/filter/#box].

	Parameters

	x (float) – distance to source pixel.

	Returns

	weight on the source pixel.

	Return type

	float

	
dmtools.transform.catmull_rom_resize_weighting_function(x: float) → float

	Catmull-Rom filter’s weighting function.

For more information about the Catmull-Rom filter, see
Cubic Filters [https://legacy.imagemagick.org/Usage/filter/#cubics].

	Parameters

	x (float) – distance to source pixel.

	Returns

	weight on the source pixel.

	Return type

	float

	
dmtools.transform.rescale(image: numpy.ndarray, k: int, filter: str = 'point', weighting_function: Optional[Callable] = None, support: Optional[Callable] = None, clip: bool = True) → numpy.ndarray

	Rescale the image by the given scaling factor.

	Parameters

	
	image (np.ndarray) – Image to rescale.

	k (int) – Scaling factor.

	filter (str) – {point, box, triangle, catrom}. Defaults to point.

	weighting_function (Callable) – Weighting function to use.

	support (float) – Support of the provided weighting function.

	clip (bool) – Clip values into [0,255] if True. Defaults to true.

	Returns

	Rescaled image.

	Return type

	np.ndarray

	
dmtools.transform.triangle_resize_weighting_function(x: float) → float

	Triangle filter’s weighting function.

For more information about the Triangle filter, see
Triangle [https://legacy.imagemagick.org/Usage/filter/#triangle].

	Parameters

	x (float) – distance to source pixel.

	Returns

	weight on the source pixel.

	Return type

	float

dmtools.colorspace module

	
dmtools.colorspace.Lab_to_RGB(image: numpy.ndarray, illuminant: str = 'D65') → numpy.ndarray

	Convert an image in Lab space to CIE RGB space.

For details about the implemented conversion, see
CIE 1931 color space [https://wikipedia.org/wiki/CIE_1931_color_space]
and
CIELAB color space [https://wikipedia.org/wiki/CIELAB_color_space].

	Parameters

	
	image (np.ndarray) – Image in Lab space.

	illuminant (str) – Standard illuminant {D65, D50}

	Returns

	Image in CIE RGB space.

	Return type

	np.ndarray

	
dmtools.colorspace.Lab_to_XYZ(image: numpy.ndarray, illuminant: str = 'D65') → numpy.ndarray

	Convert an image in Lab space to CIE XYZ space.

For details about the implemented conversion, see
CIELAB color space [https://wikipedia.org/wiki/CIELAB_color_space].

	Parameters

	
	image (np.ndarray) – Image in Lab space.

	illuminant (str) – Standard illuminant {D65, D50}

	Returns

	Image in CIE XYZ space.

	Return type

	np.ndarray

	
dmtools.colorspace.RGB_to_Lab(image: numpy.ndarray, illuminant: str = 'D65') → numpy.ndarray

	Convert an image in CIE RGB space to Lab space.

For details about the implemented conversion, see
CIE 1931 color space [https://wikipedia.org/wiki/CIE_1931_color_space]
and
CIELAB color space [https://wikipedia.org/wiki/CIELAB_color_space].

	Parameters

	
	image (np.ndarray) – Image in CIE RGB space.

	illuminant (str) – Standard illuminant {D65, D50}

	Returns

	Image in Lab space.

	Return type

	np.ndarray

	
dmtools.colorspace.RGB_to_XYZ(image: numpy.ndarray) → numpy.ndarray

	Convert an image in CIE RGB space to XYZ space.

For details about the implemented conversion, see
CIE 1931 color space [https://wikipedia.org/wiki/CIE_1931_color_space].

	Parameters

	image (np.ndarray) – Image in CIE RGB space.

	Returns

	Image in CIE XYZ space.

	Return type

	np.ndarray

	
dmtools.colorspace.RGB_to_YUV(image: numpy.ndarray) → numpy.ndarray

	Convert an image in CIE RGB space to YUV space.

For details about the implemented conversion, see
YUV [https://wikipedia.org/wiki/YUV].

	Parameters

	image (np.ndarray) – Image in CIE RGB space.

	Returns

	Image in YUV space.

	Return type

	np.ndarray

	
dmtools.colorspace.RGB_to_gray(image: numpy.ndarray) → numpy.ndarray

	Convert an image in CIE RGB space to grayscale.

For details about the implemented conversion, see
FAQs about Color [http://poynton.ca/PDFs/ColorFAQ.pdf].

	Parameters

	image (np.ndarray) – Image in CIE RGB space.

	Returns

	Image in grayscale.

	Return type

	np.ndarray

	
dmtools.colorspace.XYZ_to_Lab(image: numpy.ndarray, illuminant: str = 'D65') → numpy.ndarray

	Convert an image in CIE XYZ space to Lab space.

For details about the implemented conversion, see
CIELAB color space [https://wikipedia.org/wiki/CIELAB_color_space].

	Parameters

	
	image (np.ndarray) – Image in CIE XYZ space.

	illuminant (str) – Standard illuminant {D65, D50}

	Returns

	Image in Lab space.

	Return type

	np.ndarray

	
dmtools.colorspace.XYZ_to_RGB(image: numpy.ndarray) → numpy.ndarray

	Convert an image in CIE XYZ space to RGB space.

For details about the implemented conversion, see
CIE 1931 color space [https://wikipedia.org/wiki/CIE_1931_color_space].

	Parameters

	image (np.ndarray) – Image in CIE XYZ space.

	Returns

	Image in CIE RGB space.

	Return type

	np.ndarray

	
dmtools.colorspace.YUV_to_RGB(image: numpy.ndarray) → numpy.ndarray

	Convert an image in YUV space to CIE RGB space.

For details about the implemented conversion, see
YUV [https://wikipedia.org/wiki/YUV].

	Parameters

	image (np.ndarray) – Image in YUV space.

	Returns

	Image in CIE RGB space.

	Return type

	np.ndarray

	
dmtools.colorspace.apply_to_channels(image: numpy.ndarray, f_1: Callable, f_2: Callable, f_3: Callable) → numpy.ndarray

	Return the image with the functions applied to each channel.

	Parameters

	
	image (np.ndarray) – Image (recommended to be normalized).

	f_1 (Callable) – Function to apply to the first channel.

	f_2 (Callable) – Function to apply to the second channel.

	f_3 (Callable) – Function to apply to the third channel.

	Returns

	Pixel matrix with functions applied to each channel.

	Return type

	np.ndarray

	
dmtools.colorspace.denormalize(image: numpy.ndarray, color_space: str) → numpy.ndarray

	Denormalize the image in the given color space.

	Parameters

	
	image (np.ndarray) – Normalized image in the given color space.

	color_space (str) – Color space {RGB, Lab, YUV}.

	Returns

	Denormalized image in the given color space.

	Return type

	np.ndarray

	
dmtools.colorspace.gray_to_RGB(image: numpy.ndarray) → numpy.ndarray

	Convert an image in grayscale to CIE RGB space.

	Parameters

	image (np.ndarray) – Image in grayscale.

	Returns

	Image in CIE RGB space.

	Return type

	np.ndarray

	
dmtools.colorspace.normalize(image: numpy.ndarray, color_space: str) → numpy.ndarray

	Normalize the image in the given color space.

	Parameters

	
	image (np.ndarray) – Image in the given color space.

	color_space (str) – Color space {RGB, Lab, YUV}.

	Returns

	Normalized image with values in [0,1].

	Return type

	np.ndarray

dmtools.animation module

	
dmtools.animation.clip(path: str, start: int = 0, end: int = - 1) → List[numpy.ndarray]

	Return a list of images in the given directory.

Images are ordered according to their name. Hence, the following naming
convention is recommend.

name0000.png, name0001.png, …

	Parameters

	
	path (str) – String directory path.

	start (int, optional) – Starting frame. Defaults to 0.

	end (int, optional) – Ending frame. Defaults to -1.

	Returns

	List of NumPy arrays representing images.

	Return type

	List[np.ndarray]

	
dmtools.animation.to_mp4(frames: List[numpy.ndarray], path: str, fps: int, s: int = 1, audio: Optional[dmtools.sound.WAV] = None)

	Write an animation as a .mp4 file using ffmpeg through imageio.mp4

	Parameters

	
	frames (List[np.ndarray]) – List of frames in the animation.

	audio (sound.WAV) – Audio for the animation (None if no audio).

	path (str) – String file path.

	fps (int) – Frames per second.

	s (int, optional) – Multiplier for scaling. Defaults to 1.

dmtools.ascii module

	
class dmtools.ascii.Ascii(M: numpy.ndarray)

	Bases: object

An object representing an ASCII image.

For more information about ASCII, see
ASCII [https://wikipedia.org/wiki/ASCII]

	
to_png(path: str)

	Write object to a png file.

	Parameters

	path (str) – String file path.

	
to_txt(path: str)

	Write object to a txt file.

	Parameters

	path (str) – String file path.

	
dmtools.ascii.netpbm_to_ascii(image: dmtools.netpbm.Netpbm) → dmtools.ascii.Ascii

	Return an ASCII representation of the given image.

This function uses a particular style of
ASCII art [https://en.wikipedia.org/wiki/ASCII_art]
in which “symbols with various intensities [are used for] creating
gradients or contrasts.”

	Parameters

	image (netpbm.Netpbm) – Netpbm image.

	Returns

	ASCII representation of image.

	Return type

	Ascii

dmtools.sound module

	
class dmtools.sound.WAV(r: numpy.ndarray, l: numpy.ndarray, sample_rate: int = 44100)

	Bases: object

An object representing a WAV audio file.

For more information about the audio file format, see
WAV [https://en.wikipedia.org/wiki/WAV]

	
to_wav(path)

	Write object to a WAV audio file (wav)

	Parameters

	path (str) – String file path.

	
dmtools.sound.wave(f: float, a: float, t: float) → numpy.ndarray

	Generate the samples of a sound wave.

	Parameters

	
	f (float) – Frequency of the sound wave.

	a (float) – Amplitude of the sound wave.

	t (float) – Duration (seconds) of the sound wave.

	Returns

	NumPy array with sample points of wave.

	Return type

	np.ndarray

	
dmtools.sound.wave_sequence(frequencies: numpy.ndarray, t) → dmtools.sound.WAV

	Return a Wav sound which iterates through the given frequencies.

	Parameters

	
	frequencies (np.ndarray) – frequencies to iterate through.

	t ([type]) – duration of iteration.

	Returns

	Wav file.

	Return type

	WAV

dmtools.arrange module

	
dmtools.arrange.border(image: numpy.ndarray, b: int, color: int = 'white', k: int = 255) → numpy.ndarray

	Add a border of width b to the image.

	Parameters

	
	image (Netpbm) – Netpbm image to add a border to

	b (int) – width of the border/margin.

	color (int) – color of border {‘white’, ‘black’} (defaults to white).

	k (int) – white point (defaults to 255).

	Returns

	Image with border added.

	Return type

	np.ndarray

	
dmtools.arrange.image_grid(images: List[numpy.ndarray], w: int, h: int, b: int, color: int = 'white', k: int = 255) → numpy.ndarray

	Create a w * h grid of images with a border of width b.

	Parameters

	
	images (List[np.ndarray]) – images (of same dimension) for grid.

	w (int) – number of images in each row of the grid.

	h (int) – number of images in each column of the grid.

	b (int) – width of the border/margin.

	color (int) – color of border {‘white’, ‘black’} (defaults to white).

	k (int) – white point (defaults to 255).

	Returns

	grid layout of the images.

	Return type

	np.ndarray

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 dmtools	

 	
 	
 dmtools.animation	

 	
 	
 dmtools.arrange	

 	
 	
 dmtools.ascii	

 	
 	
 dmtools.colorspace	

 	
 	
 dmtools.io	

 	
 	
 dmtools.netpbm	

 	
 	
 dmtools.sound	

 	
 	
 dmtools.transform	

Index

 A
 | B
 | C
 | D
 | E
 | G
 | I
 | L
 | M
 | N
 | R
 | S
 | T
 | W
 | X
 | Y

A

 	
 	apply_to_channels() (in module dmtools.colorspace)

 	
 	Ascii (class in dmtools.ascii)

B

 	
 	border() (in module dmtools.arrange)

 	
 	box_resize_weighting_function() (in module dmtools.transform)

C

 	
 	catmull_rom_resize_weighting_function() (in module dmtools.transform)

 	
 	clip() (in module dmtools.animation)

D

 	
 	denormalize() (in module dmtools.colorspace)

 	
 dmtools.animation

 	module

 	
 dmtools.arrange

 	module

 	
 dmtools.ascii

 	module

 	
 dmtools.colorspace

 	module

 	
 	
 dmtools.io

 	module

 	
 dmtools.netpbm

 	module

 	
 dmtools.sound

 	module

 	
 dmtools.transform

 	module

E

 	
 	extension_to_magic_number (dmtools.netpbm.Netpbm attribute)

G

 	
 	gray_to_RGB() (in module dmtools.colorspace)

I

 	
 	image_grid() (in module dmtools.arrange)

L

 	
 	Lab_to_RGB() (in module dmtools.colorspace)

 	
 	Lab_to_XYZ() (in module dmtools.colorspace)

M

 	
 	magic_number_to_extension (dmtools.netpbm.Netpbm attribute)

 	
 module

 	dmtools.animation

 	dmtools.arrange

 	dmtools.ascii

 	dmtools.colorspace

 	dmtools.io

 	dmtools.netpbm

 	dmtools.sound

 	dmtools.transform

N

 	
 	Netpbm (class in dmtools.netpbm)

 	
 	netpbm_to_ascii() (in module dmtools.ascii)

 	normalize() (in module dmtools.colorspace)

R

 	
 	read_netpbm() (in module dmtools.netpbm)

 	read_png() (in module dmtools.io)

 	rescale() (dmtools.netpbm.Netpbm method)

 	(in module dmtools.transform)

 	
 	RGB_to_gray() (in module dmtools.colorspace)

 	RGB_to_Lab() (in module dmtools.colorspace)

 	RGB_to_XYZ() (in module dmtools.colorspace)

 	RGB_to_YUV() (in module dmtools.colorspace)

S

 	
 	set_max_color_value() (dmtools.netpbm.Netpbm method)

T

 	
 	to_mp4() (in module dmtools.animation)

 	to_netpbm() (dmtools.netpbm.Netpbm method)

 	to_png() (dmtools.ascii.Ascii method)

 	(dmtools.netpbm.Netpbm method)

 	
 	to_txt() (dmtools.ascii.Ascii method)

 	to_wav() (dmtools.sound.WAV method)

 	triangle_resize_weighting_function() (in module dmtools.transform)

W

 	
 	WAV (class in dmtools.sound)

 	wave() (in module dmtools.sound)

 	
 	wave_sequence() (in module dmtools.sound)

 	write_png() (in module dmtools.io)

X

 	
 	XYZ_to_Lab() (in module dmtools.colorspace)

 	
 	XYZ_to_RGB() (in module dmtools.colorspace)

Y

 	
 	YUV_to_RGB() (in module dmtools.colorspace)

 _static/dmtools_light.png

_static/plus.png

_static/file.png

_static/minus.png

_images/dmtools_dark.png

_images/anaconda_apps.png
%_) ANACONDA NAVIGATOR

A Home Applications on | base root) | channeis

@ Environments. ® i
L2

g Learning Datalore 1BM Watson Studio Cloud

Online Data Analysis Tool with smart coding
assistance by JetBrains. Edit and run your
Python notebooks in the cloud and share

them with your team.

% Community

Launch

VS Code

1600

Streamlined code editor with support for
‘development operations like debugging,
task running and version control.

Launch

ANACONDA

Join Now

Discover premium data
stience content

Documentation

Anaconda Blog

1BM Watson Studio Cloud provides you the
tools to analyze and visualize dat3, to cleanse
and shape data, to create and train machine
learning models. Prepare data and buid
models, using open source data science tools
‘or visual modelina

Launch

Glueviz

100

Multidimensional data visualization across
fils. Explore relationships within and among
related datasets.

Install

JupyterLab

3044

An extensible environment for interactive
and reproducible computing, based on the
Jupyter Notebook and Architecture.

Launch

Orange 3

3260

Component based data mining framework.
Data visualzation and data analysis for
novice and expert. Interactive workflows
witha large toolbox.

Install

Q
_—~
Jupyter
N
Notebook
2630

Web-based, interactive computing notebook
environment. Edit and run human-readable
‘docs while describing the data analysis.

Launch

PyCharm Professional

A Fullfledged IDE by JetBrains for both
Scientific and Web Python development.
Supports HTML, J5, and SQL.

Install

QtConsole

2503

PYQEGUIthat supports nline figures, proper
‘multiline editing with syntax highlighting,
graphical calltips, and more.

Launch

RStudio

1.1.456

Aset of integrated tools designed to help
you be more productive with R.Includes R
essentials and notebooks.

Install

Refresh

Spyder

2 a2s

Scientific PYthon Development
EnviRonment. Powerful Python IDE with
advanced editing, interactive testing,
debugging and introspection features

Launch

_images/anaconda_installers.png
Windows 58

64-Bit Graphical Installer (477 MB)

32-Bit Graphical Installer (409 MB)

Anaconda Installers

MacOS &

64-Bit Graphical Installer (440 MB)

64-Bit Command Line Installer (433 MB)

Linux &

64-Bit (x86) Installer (544 MB)

64-Bit (Power8 and Power9) Installer (285
MB)

64-Bit (AWS Graviton2 / ARM64) Installer
(413 M)

64-bit (Linux on IBM Z & LinuxONE) Installer
(292 M)

nav.xhtml

 Table of Contents

 		
 <no title>

 		
 Installation

 		
 Installing Python

 		
 Q&A

 		
 Anaconda

 		
 Installing dmtools

 		
 Installing FFmpeg (Optional)

 		
 Tutorials

 		
 Using Jupyter Notebooks

 		
 Introduction to Python

 		
 Working with Images in NumPy

 		
 Documentation

 		
 dmtools package

 		
 dmtools.io module

 		
 dmtools.netpbm module

 		
 dmtools.transform module

 		
 dmtools.colorspace module

 		
 dmtools.animation module

 		
 dmtools.ascii module

 		
 dmtools.sound module

 		
 dmtools.arrange module

